Asenna Steam
kirjaudu sisään
|
kieli
简体中文 (yksinkertaistettu kiina)
繁體中文 (perinteinen kiina)
日本語 (japani)
한국어 (korea)
ไทย (thai)
български (bulgaria)
Čeština (tšekki)
Dansk (tanska)
Deutsch (saksa)
English (englanti)
Español – España (espanja – Espanja)
Español – Latinoamérica (espanja – Lat. Am.)
Ελληνικά (kreikka)
Français (ranska)
Italiano (italia)
Bahasa Indonesia (indonesia)
Magyar (unkari)
Nederlands (hollanti)
Norsk (norja)
Polski (puola)
Português (portugali – Portugali)
Português – Brasil (portugali – Brasilia)
Română (romania)
Русский (venäjä)
Svenska (ruotsi)
Türkçe (turkki)
Tiếng Việt (vietnam)
Українська (ukraina)
Ilmoita käännösongelmasta
⠀⠀⠀⠀⢡⣤⣿⣿
⠀⠀⠀⠀⠠⠜⢾⡟
⠀⠀⠀⠀⠀⠹⠿⠃⠄
⠀⠀⠈⠀⠉⠉⠑⠀⠀⠠⢈⣆
⠀⠀⣄⠀⠀⠀⠀⠀⢶⣷⠃⢵
⠐⠰⣷⠀⠀⠀⠀⢀⢟⣽⣆⠀⢃
⠰⣾⣶⣤⡼⢳⣦⣤⣴⣾⣿⣿⠞
⠀⠈⠉⠉⠛⠛⠉⠉⠉⠙⠁
⠀⠀⡐⠘⣿⣿⣯⠿⠛⣿⡄
⠀⠀⠁⢀⣄⣄⣠⡥⠔⣻⡇
⠀⠀⠀⠘⣛⣿⣟⣖⢭⣿⡇
⠀⠀⢀⣿⣿⣿⣿⣷⣿⣽⡇
⠀⠀⢸⣿⣿⣿⡇⣿⣿⣿⣇
⠀⠀⠀⢹⣿⣿⡀⠸⣿⣿⡏
⠀⠀⠀⢸⣿⣿⠇⠀⣿⣿⣿
⠀⠀⠀⠈⣿⣿⠀⠀⢸⣿⡿
⠀⠀⠀⠀⣿⣿⠀⠀⢀⣿⡇
⠀⣠⣴⣿⡿⠟⠀⠀⢸⣿⣷
⠀⠉⠉⠁⠀⠀⠀⠀⢸⣿⣿
you know i had to do it to them
Say you earn $20.50 per hour, this can be written as:
dm/dt = 20.5
The relationship between problems and money would be:
p = ln(m)
Let's look at the rate at which money brings problems. By differentiation:
dp/dm = 1/m
Then by the Chain Rule, the rate at which time brings problems is:
dp/dt = 20.5 x 1/m = 41/(2m)
So, how much money do you need so that you have 0.2 problems per hour?
Well, if dp/dt = 1/5; then we equate 41/(2m) = 1/5. This gives m to be 102.5. Therefore, to have 0.2 problems per hour, you would need $102.50.