Instalar Steam
iniciar sesión
|
idioma
简体中文 (chino simplificado)
繁體中文 (chino tradicional)
日本語 (japonés)
한국어 (coreano)
ไทย (tailandés)
Български (búlgaro)
Čeština (checo)
Dansk (danés)
Deutsch (alemán)
English (inglés)
Español de Hispanoamérica
Ελληνικά (griego)
Français (francés)
Italiano
Bahasa Indonesia (indonesio)
Magyar (húngaro)
Nederlands (holandés)
Norsk (noruego)
Polski (polaco)
Português (Portugués de Portugal)
Português-Brasil (portugués de Brasil)
Română (rumano)
Русский (ruso)
Suomi (finés)
Svenska (sueco)
Türkçe (turco)
Tiếng Việt (vietnamita)
Українська (ucraniano)
Comunicar un error de traducción
/)─―ヘ
_/ \
/ ● ●丶
| ▼ |
| 亠ノ
U ̄U ̄ ̄ ̄ ̄U ̄
+rep
.
The ⊢ symbol has not changed; it means that the formula to which it applies is asserted to be true. ⊃ is logical implication, and ≡ is logical equivalence. Λ is the empty set, which we write nowadays as ∅. ∩ ∪ and ∈ have their modern meanings: ∩ and ∪ are the set intersection and the union operators, and x∈y means that x is an element of set y.
The remaining points are semantic. α and β are sets. 1 denotes the set of all sets that have exactly one element. That is, it's the set { c : there exists a such that c = { a } }. Theorems about 1 include, for example:
that Λ∉1 (∗52.21),
that if α∈1 then there is some x such that α = {x} (∗52.1), and
that {x}∈1 (∗52.22).
2 is similarly the set of all sets that have exactly two elements. An important theorem about 2 is ∗54.3, which says
∗54.3.⊢2=α^{(∃x).x∈α.α−ι‘x∈1}.