Instalează Steam
conectare
|
limbă
简体中文 (chineză simplificată)
繁體中文 (chineză tradițională)
日本語 (japoneză)
한국어 (coreeană)
ไทย (thailandeză)
български (bulgară)
Čeština (cehă)
Dansk (daneză)
Deutsch (germană)
English (engleză)
Español - España (spaniolă - Spania)
Español - Latinoamérica (spaniolă - America Latină)
Ελληνικά (greacă)
Français (franceză)
Italiano (italiană)
Bahasa Indonesia (indoneziană)
Magyar (maghiară)
Nederlands (neerlandeză)
Norsk (norvegiană)
Polski (poloneză)
Português (portugheză - Portugalia)
Português - Brasil (portugheză - Brazilia)
Русский (rusă)
Suomi (finlandeză)
Svenska (suedeză)
Türkçe (turcă)
Tiếng Việt (vietnameză)
Українська (ucraineană)
Raportează o problemă de traducere
/)─―ヘ
_/ \
/ ● ●丶
| ▼ |
| 亠ノ
U ̄U ̄ ̄ ̄ ̄U ̄
+rep
.
The ⊢ symbol has not changed; it means that the formula to which it applies is asserted to be true. ⊃ is logical implication, and ≡ is logical equivalence. Λ is the empty set, which we write nowadays as ∅. ∩ ∪ and ∈ have their modern meanings: ∩ and ∪ are the set intersection and the union operators, and x∈y means that x is an element of set y.
The remaining points are semantic. α and β are sets. 1 denotes the set of all sets that have exactly one element. That is, it's the set { c : there exists a such that c = { a } }. Theorems about 1 include, for example:
that Λ∉1 (∗52.21),
that if α∈1 then there is some x such that α = {x} (∗52.1), and
that {x}∈1 (∗52.22).
2 is similarly the set of all sets that have exactly two elements. An important theorem about 2 is ∗54.3, which says
∗54.3.⊢2=α^{(∃x).x∈α.α−ι‘x∈1}.