ติดตั้ง Steam
เข้าสู่ระบบ
|
ภาษา
简体中文 (จีนตัวย่อ)
繁體中文 (จีนตัวเต็ม)
日本語 (ญี่ปุ่น)
한국어 (เกาหลี)
български (บัลแกเรีย)
Čeština (เช็ก)
Dansk (เดนมาร์ก)
Deutsch (เยอรมัน)
English (อังกฤษ)
Español - España (สเปน)
Español - Latinoamérica (สเปน - ลาตินอเมริกา)
Ελληνικά (กรีก)
Français (ฝรั่งเศส)
Italiano (อิตาลี)
Bahasa Indonesia (อินโดนีเซีย)
Magyar (ฮังการี)
Nederlands (ดัตช์)
Norsk (นอร์เวย์)
Polski (โปแลนด์)
Português (โปรตุเกส - โปรตุเกส)
Português - Brasil (โปรตุเกส - บราซิล)
Română (โรมาเนีย)
Русский (รัสเซีย)
Suomi (ฟินแลนด์)
Svenska (สวีเดน)
Türkçe (ตุรกี)
Tiếng Việt (เวียดนาม)
Українська (ยูเครน)
รายงานปัญหาเกี่ยวกับการแปลภาษา
┻━┻ ︵ ヽ(°□°ヽ) FLIP THIS TABLE.
┻━┻ ︵ \(`0`)// ︵ ┻━┻ FLIP ALL THE TABLES
ಠ_ಠ Jannik. . .
ಠ_ಠ Put.
ಠ__ಠ The tables.
ಠ___ಠ Back.
(╮°-°)╮┳━┳
(╯°□°)╯︵ ┻━┻ NEVER
Der Hall-Effekt, benannt nach Edwin Hall, beschreibt das Auftreten einer elektrischen Spannung in einem stromdurchflossenen Leiter, der sich in einem stationären Magnetfeld befindet. Die Spannung fällt dabei senkrecht sowohl zur Stromfluss- als auch zur Magnetfeldrichtung am Leiter ab und wird Hall-Spannung genannt.
Die Größe der Spannung kann mit Hilfe der weiter unten hergeleiteten Gleichung
U=A*(IB/d)
aus Stromstärke I, magnetischer Flussdichte B, Dicke der Probe d (parallel zu B) und einer Materialkonstanten – der so genannten Hall-Konstanten A – berechnet werden.