Instalează Steam
conectare
|
limbă
简体中文 (chineză simplificată)
繁體中文 (chineză tradițională)
日本語 (japoneză)
한국어 (coreeană)
ไทย (thailandeză)
български (bulgară)
Čeština (cehă)
Dansk (daneză)
Deutsch (germană)
English (engleză)
Español - España (spaniolă - Spania)
Español - Latinoamérica (spaniolă - America Latină)
Ελληνικά (greacă)
Français (franceză)
Italiano (italiană)
Bahasa Indonesia (indoneziană)
Magyar (maghiară)
Nederlands (neerlandeză)
Norsk (norvegiană)
Polski (poloneză)
Português (portugheză - Portugalia)
Português - Brasil (portugheză - Brazilia)
Русский (rusă)
Suomi (finlandeză)
Svenska (suedeză)
Türkçe (turcă)
Tiếng Việt (vietnameză)
Українська (ucraineană)
Raportează o problemă de traducere
┻━┻ ︵ ヽ(°□°ヽ) FLIP THIS TABLE.
┻━┻ ︵ \(`0`)// ︵ ┻━┻ FLIP ALL THE TABLES
ಠ_ಠ Jannik. . .
ಠ_ಠ Put.
ಠ__ಠ The tables.
ಠ___ಠ Back.
(╮°-°)╮┳━┳
(╯°□°)╯︵ ┻━┻ NEVER
Der Hall-Effekt, benannt nach Edwin Hall, beschreibt das Auftreten einer elektrischen Spannung in einem stromdurchflossenen Leiter, der sich in einem stationären Magnetfeld befindet. Die Spannung fällt dabei senkrecht sowohl zur Stromfluss- als auch zur Magnetfeldrichtung am Leiter ab und wird Hall-Spannung genannt.
Die Größe der Spannung kann mit Hilfe der weiter unten hergeleiteten Gleichung
U=A*(IB/d)
aus Stromstärke I, magnetischer Flussdichte B, Dicke der Probe d (parallel zu B) und einer Materialkonstanten – der so genannten Hall-Konstanten A – berechnet werden.