Team Fortress 2

Team Fortress 2

255 ratings
Como Calcular La Dirección de los Proyectiles Según la Ley de la Gravitación Universal En TF2
By Cara De Queso
En esta guía aprenderemos a calcular la dirección del proyectil según la Ley de la Gravitación Universal
2
4
2
2
   
Award
Favorite
Favorited
Unfavorite
Primero: Que es la Ley de la Gravitación Universal


Un momento culminante en la historia de la Física fue el descubrimiento realizado por Isaac Newton de la Ley de la Gravitación Universal: todos los objetos se atraen unos a otros con una fuerza directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que separa sus centros. Al someter a una sola ley matemática los fenómenos físicos más importantes del universo observable, Newton demostró que la física terrestre y la física celeste son una misma cosa. El concepto de gravitación lograba de un solo golpe:
Originally posted by TOBI✧:
  • Revelar el significado físico de las tres leyes de Kepler sobre el movimiento planetario.
  • Resolver el intrincado problema del origen de las mareas
  • Dar cuenta de la curiosa e inexplicable observación de Galileo Galilei de que el movimiento de un objeto en caída libre es independiente de su peso.
    La tercera ley de Kepler
    La naturaleza cuadrático inversa de la fuerza centrípetra para el caso de órbitas circulares, puede deducirse fácilmente de la tercera ley de Kepler sobre el movimiento planetario y de la dinámica del movimiento circular uniforme:
    1. Según la tercera ley de Kepler el cuadrado del periodo P es proporcional al cubo del semieje mayor de la elipse, que en el caso de la circunferencia es su propio radio r, P2=kr3.
    2. La dinámica del movimiento circular uniforme, nos dice que en una trayectoria circular, la fuerza que hay que aplicar al cuerpo es igual al producto de su masa por la aceleración normal, F=mv2/r.
    3. El tiempo que tarda un planeta en dar una vuelta completa es el cociente entre la longitud de la circunferencia y la velocidad, P=2p r/v.

    Combinando estas expresiones, obtenemos



    Vemos que la fuerza F que actúa sobre el planeta en movimiento circular uniforme es inversamente proporcional al cuadrado de la distancia r desde el centro de fuerzas al centro del planeta.





    Newton comparó la aceleración centrípeta de la Luna con la aceleración de la gravedad g=9.8 m/s2. La aceleración centrípeta de la Luna es ac=v2/r=4p 2r/P2, con r=3.84·108 m y P=28 días=2.36·106 s, se obtiene ac=2.72·10-3 m/s2. Por consiguiente,



    Como el radio de la Tierra es 6.37·106 m, y el radio de la órbita de la Luna es 3.84·108 m, tenemos que



    Por tanto,



    Las aceleraciones de ambos cuerpos están en razón inversa del cuadrado de las distancias medidas desde el centro de la Tierra.
    Descripción
    En la física anterior a Newton una manzana cae verticalmente hacia la Tierra en una trayectoria rectilínea, mientras que la Luna describe una órbita casi circular, que es una trayectoria cerrada.¿Cómo estas dos categorías de movimientos pueden estar relacionadas?

    Si la manzana que caía verticalmente es empujada por la fuerza del aire, su trayectoria ya no será rectilínea sino el arco de una curva. Por ejemplo un proyectil disparado desde un cañón describe una trayectoria parabólica tal como se observaba en el siglo XVII en el que vivió Newton . El salto conceptual que llevó a cabo Newton fue el de imaginar que los proyectiles podrían ser disparados desde lo alto de una montaña describiendo trayectorias elípticas (siendo la parábola una aproximación de la elipse).

    Por tanto, la manzana y la Luna están cayendo, la diferencia es que la Luna tiene un movimiento de caída permanente, mientras que la manzana choca con la superficie de la Tierra.

    Una misma causa produce, por tanto, los movimientos de los cuerpos celestes y terrestres. Un dibujo que aparece en muchos libros de texto, tomado del libro de Newton "El sistema del mundo"[libros.mercadolibre.com.ar], ilustra esta unificación.


    "Si consideramos los movimientos de los proyectiles podremos entender fácilmente que los planetas pueden ser retenidos en ciertas órbitas mediante fuerzas centrípetas; pues una piedra proyectada se va apartando de su senda rectilínea por la presión de su propio peso y obligada a describir en el aire una curva, cuando en virtud de la sola proyección inicial habría debido continuar dicha senda recta, en vez de ser finalmente atraída al suelo; y cuanto mayor es la velocidad con la cual resulta ser proyectada más lejos llega, antes de caer a tierra. Podemos por eso suponer que la velocidad se incremente hasta que la piedra describa un arco de 1, 2, 5, 10, 100, 1000 millas antes de caer, de forma que al final, superando los límites de la Tierra, pasará al espacio sin tocarla...

    En la figura, se representa las curvas que un cuerpo describiría si fuese proyectado en dirección horizontal desde la cima de una alta montaña a más y más velocidad. Puesto que los movimientos celestes no son prácticamente r3tardados por la pequeña o nula resistencia de los espacios donde tienen lugar, supongamos, para conservar la analogía de los casos, que en la Tierra no hubiera aire, o al menos que éste está dotado de un poder de resistencia nulo o muy pequeño.

    Entonces, por la misma razón que un cuerpo proyectado con menos velocidad describe el arco menor y, proyectado con más velocidad, un arco mayor, al aumentar la velocidad, terminará por llegar bastante más allá de la circunferencia de la Tierra, retornando a la montaña desde la que fue proyectada.

    Y puesto que las áreas descritas por el movimiento del radio trazado desde el centro de la Tierra son proporcionales a su tiempo de descripción, su velocidad al retornar a la montaña no será menor que al principio, por lo que reteniendo la misma velocidad, describirá la misma curva una y otra vez, obedeciendo a la misma ley".

    Vamos ahora a cambiar, la imagen estática por un programa interactivo o applet, que nos ilustre la unificación de las causas de los movimientos que ocurren en el espacio exterior y en la superficie de la Tierra.
    Actividades
    Se introduce

    Originally posted by TOBI✧:

    • La altura en kilómetros sobre la superficie de la Tierra desde la que lanzamos el objeto, perpendicularmente a la dirección radial, en el control de edición titulado Altura (km)

    • La velocidad con que se lanza el objeto, en el control titulado Velocidad (m/s) .
      Se pulsa el botón titulado DispararSe representa la trayectoria seguida por el objeto. Si su trayectoria se interseca con la superficie de la Tierra, se calcula el alcance o longitud del arco del meridiano terrestre comprendido entre la dirección radial de disparo, y la dirección radial de impacto.Cambiamos la velocidad de disparo sin cambiar la altura, comparando las distintas trayectorias. Cuando se hayan acumulado varias trayectorias se puede limpiar el área de trabajo de applet pulsando en el botón titulado Borrar.
    Ejemplos:
    Comprobamos que un proyectil disparado horizontalmente en lo alto de una montaña situada en el polo Norte, no puede caer más allá del polo Sur, como máximo hasta el punto G marcado en el dibujo de Newton. Si se le proporciona una velocidad adicional el proyectil rodeará la Tierra.

    Para comprobarlo, introducir los siguientes datos en los respectivos controles de edición

    Altura 30000 km
    Velocidad de disparo 1808 y 1809 m/s
    Cuando ponemos una altura grande como 20000 km o más se ve una gran parte de la Tierra, podemos entonces representar las distintas trayectorias y reproducir una imagen análoga al dibujo de Newton que se muestra en esta página.

    Calcular la velocidad de disparo para que el proyectil describa una trayectoria circular[www.sc.ehu.es]
    Datos:
    • Masa de la Tierra M=5.98·1024 kg
    • Radio de la Tierra, R=6.37·106 m
    • Constante G=6.67·10-11 Nm2/kg2



    Cuando la altura es pequeña, por ejemplo 20 km o menos, la superficie de la Tierra aparece plana, la trayectoria elíptica se aproxima a la parábola que describe un cuerpo bajo la aceleración constante de la gravedad. Calculamos el alcance aplicando las ecuaciones del tiro parabólico.[www.sc.ehu.es]

    Un proyectil se dispara desde una altura de h=20 km, con una velocidad de v=30 m/s, calcular el alcance. Tómese g=9.8 m/s2
    Final de la Guia

    Originally posted by TOBI✧:

    • Lamentablemente llegamos al final de esta guía

    • Amor y Paz A Todos
    49 Comments
    SADG 8 Aug, 2024 @ 4:14pm 
    y la hipotenusa?
    amongusito2339 3 Aug, 2024 @ 1:53pm 
    No soy matematico gracias bb
    :steamsalty:
    RIP BOZO #TuMaridoLaCreatina 9 Apr, 2024 @ 2:41pm 
    Buena guía, ahora mi nivel de manquedad se reducirá al 100% gracias:steamhappy::steamthumbsup:
    TioPrepucio #TF2EASY 11 Oct, 2023 @ 12:32am 
    Eso ya me lo se
    DesowJK 19 Sep, 2023 @ 8:30pm 
    Si no veía esta guía quizás no podría lanzar un proyectil :ccskull:
    MrClov3ruwu TF2EASY.COM 22 Apr, 2023 @ 5:20pm 
    Y la de chambear te la sabes?
    Yuanlacsimo 28 Mar, 2023 @ 7:15pm 
    ._.
    Tomky13 5 May, 2022 @ 4:04pm 
    Calculaste mal. :steamthumbsdown:
    Azctradus Shantiedzka. 29 Apr, 2022 @ 5:22pm 
    Muy God
    Kenny 11 Mar, 2022 @ 2:24pm 
    ya me l osabia :steamthumbsup: