2
Products
reviewed
63
Products
in account

Recent reviews by 小印花

Showing 1-2 of 2 entries
1 person found this review helpful
67.0 hrs on record (5.9 hrs at review time)
Early Access Review
忍不住了,开导!




















(sinx)' = cosx
  (cosx)' = - sinx
  (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
  -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
  (secx)'=tanx·secx
  (cscx)'=-cotx·cscx
  (arcsinx)'=1/(1-x^2)^1/2
  (arccosx)'=-1/(1-x^2)^1/2
  (arctanx)'=1/(1+x^2)
  (arccotx)'=-1/(1+x^2)
  (arcsecx)'=1/(|x|(x^2-1)^1/2)
  (arccscx)'=-1/(|x|(x^2-1)^1/2)
  ④(sinhx)'=coshx
  (coshx)'=sinhx
  (tanhx)'=1/(coshx)^2=(sechx)^2
  (coth)'=-1/(sinhx)^2=-(cschx)^2
  (sechx)'=-tanhx·sechx
  (cschx)'=-cothx·cschx
  (arsinhx)'=1/(x^2+1)^1/2
  (arcoshx)'=1/(x^2-1)^1/2
  (artanhx)'=1/(x^2-1) (|x|<1)
  (arcothx)'=1/(x^2-1) (|x|>1)
  (arsechx)'=1/(x(1-x^2)^1/2)
  (arcschx)'=1/(x(1+x^2)^1/2)​
Posted 30 January, 2022.
Was this review helpful? Yes No Funny Award
3 people found this review helpful
43.0 hrs on record (0.3 hrs at review time)
⣿⣿⣿⣿⣿⠟⠋⠄⠄⠄⠄⠄⠄⠄⢁⠈⢻⢿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⠃⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠈⡀⠭⢿⣿⣿⣿⣿
⣿⣿⣿⣿⡟⠄⢀⣾⣿⣿⣿⣷⣶⣿⣷⣶⣶⡆⠄⠄⠄⣿⣿⣿⣿
⣿⣿⣿⣿⡇⢀⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⠄⠄⢸⣿⣿⣿⣿
⣿⣿⣿⣿⣇⣼⣿⣿⠿⠶⠙⣿⡟⠡⣴⣿⣽⣿⣧⠄⢸⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣾⣿⣿⣟⣭⣾⣿⣷⣶⣶⣴⣶⣿⣿⢄⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⡟⣩⣿⣿⣿⡏⢻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣹⡋⠘⠷⣦⣀⣠⡶⠁⠈⠁⠄⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣍⠃⣴⣶⡔⠒⠄⣠⢀⠄⠄⠄⡨⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣦⡘⠿⣷⣿⠿⠟⠃⠄⠄⣠⡇⠈⠻⣿⣿⣿⣿
⣿⣿⣿⣿⡿⠟⠋⢁⣷⣠⠄⠄⠄⠄⣀⣠⣾⡟⠄⠄⠄⠄⠉⠙⠻
⡿⠟⠋⠁⠄⠄⠄⢸⣿⣿⡯⢓⣴⣾⣿⣿⡟⠄⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⣿⡟⣷⠄⠹⣿⣿⣿⡿⠁⠄⠄⠄⠄⠄⠄⠄⠄
china NO.1
Posted 11 May, 2021.
Was this review helpful? Yes No Funny Award
Showing 1-2 of 2 entries