Install Steam
login
|
language
简体中文 (Simplified Chinese)
繁體中文 (Traditional Chinese)
日本語 (Japanese)
한국어 (Korean)
ไทย (Thai)
Български (Bulgarian)
Čeština (Czech)
Dansk (Danish)
Deutsch (German)
Español - España (Spanish - Spain)
Español - Latinoamérica (Spanish - Latin America)
Ελληνικά (Greek)
Français (French)
Italiano (Italian)
Bahasa Indonesia (Indonesian)
Magyar (Hungarian)
Nederlands (Dutch)
Norsk (Norwegian)
Polski (Polish)
Português (Portuguese - Portugal)
Português - Brasil (Portuguese - Brazil)
Română (Romanian)
Русский (Russian)
Suomi (Finnish)
Svenska (Swedish)
Türkçe (Turkish)
Tiếng Việt (Vietnamese)
Українська (Ukrainian)
Report a translation problem
x(t)=e−atcosωtu(t)=e−at(ejωt+e−jωt2)u(t)
By the definition of the Laplace transform, we have,
X(s)=L[e−atcosωtu(t)]=L[e−at(ejωt+e−jωt2)u(t)]
⇒L[e−atcosωtu(t)]=12{L[e−atejωtu(t)]+L[e−ate−jωtu(t)]}
⇒L[e−atcosωtu(t)]=12{L[e−(a−jω)tu(t)]+L[e−(a+jω)tu(t)]}
⇒L[e−atcosωtu(t)]=12[1s+(a−jω)+1s+(a+jω)]
⇒L[e−atcosωtu(t)]=12[1(s+a)−jω+1(s+a)+jω]=[s+a(s+a)2+ω2