justin
Australia
mathmatics dominates all
mathmatics dominates all
Fibonacci Numbers in Pascal's Triangle
The Fibonacci Numbers are also applied in Pascal's Triangle. Entry is sum of the two numbers either side of it, but in the row above. Diagonal sums in Pascal's Triangle are the Fibonacci numbers.

An interesting property of Pascal's Triangle is that its diagonals sum to the Fibonacci sequence, as shown in the picture below:

Fig.2 diagonal sums in Pascal's triangle

The sum of the entries in the nth diagonal of Pascal's triangle is equal to the nth Fibonacci numbers for all positive integers n. Suppose ∑dn sum of the numbers at nth diagonal and fn = nth Fibonacci number, n ≥ 0.

Principle of Mathematical Induction will be used for proof.

For n = 0, ∑d0 = 0, f0 = 0 (The result is true for n = 0) Assume that ∑dk = fk fk+1 = fk+ fk−1, Property of Fibonacci Sequence f(k) = ∑dk and f(k−1) = ∑dk−1, inductive hypothesis

Therefore, ∑dk+1 = ∑dk+∑dk−1

F12+F22 = 12

추천 아트워크 전시대
mathmatics
2
osh tones 2024년 3월 11일 오후 6시 05분 
memory eternal
azso 2024년 3월 11일 오전 4시 23분 
RIP :(
osh tones 2023년 9월 6일 오전 2시 08분 
:(
Neen 2022년 12월 10일 오전 5시 16분 
take your meds please mom misses you
Lukasz 2022년 10월 14일 오후 11시 49분 
:steamhappy:
Trillium 2022년 7월 3일 오후 6시 52분 
Give me a message when you get back. Worried about you...