Lite-Ta
Lonely_Geezer
 
 
\left(x-1\right)\left(x+3\right) x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + a_4}}} \sum_{i=1}^{n}{X_i^2} e^{i \theta} \vec{F}=m \frac{d \vec{v}}{dt} + \vec{v}\frac{dm}{dt} \oint \vec{F} \cdot d\vec{s}=0 \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \begin{pmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{pmatrix} \cos^{-1}\theta \bigcap_{i=1}^{n}{X_i} \bigcup_{i=1}^{n}{X_i} X_1, \cdots,X_n x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + a_4}}} \sum_{i=1}^{n}{X_i} x = a_0 + \frac{1}{\displaystyle a_1 + \frac{1}{\displaystyle a_2 + \frac{1}{\displaystyle a_3 + a_4}}} \sqrt{\frac{x^2}{k+1}}\qquad
x^{\frac{2}{k+1}}\qquad
\frac{\partial^2f}{\partial x^2} \oint \vec{F} \cdot d\vec{s}=0 \mathbf{X} = \left(
\begin{array}{ccc}
x_1 & x_2 & \ldots \\
x_3 & x_4 & \ldots \\
\vdots & \vdots & \ddots
\end{array} \right) A\underset{0}{\overset{a}{\rightleftharpoons}}B 2H_2 + O_2 {\overset{n,m}{\longrightarrow}} 2H_2O e^{i \theta} x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + a_4}}} x = a_0 + \frac{1}{\displaystyle a_1 + \frac{1}{\displaystyle a_2 + \frac{1}{\displaystyle a_3 + a_4}}} \frac{x-\mu}{\sigma}
Currently Offline
Recent Activity
149 hrs on record
last played on 24 Dec
9.3 hrs on record
last played on 13 Dec
115 hrs on record
last played on 13 Dec