Installer Steam
connexion
|
langue
简体中文 (chinois simplifié)
繁體中文 (chinois traditionnel)
日本語 (japonais)
한국어 (coréen)
ไทย (thaï)
Български (bulgare)
Čeština (tchèque)
Dansk (danois)
Deutsch (allemand)
English (anglais)
Español - España (espagnol castillan)
Español - Latinoamérica (espagnol d'Amérique latine)
Ελληνικά (grec)
Italiano (italien)
Bahasa Indonesia (indonésien)
Magyar (hongrois)
Nederlands (néerlandais)
Norsk (norvégien)
Polski (polonais)
Português (portugais du Portugal)
Português - Brasil (portugais du Brésil)
Română (roumain)
Русский (russe)
Suomi (finnois)
Svenska (suédois)
Türkçe (turc)
Tiếng Việt (vietnamien)
Українська (ukrainien)
Signaler un problème de traduction
It is not in your best interest to ignore me. I have a very bad temper and you do not want to see it get away from me. You will send me some sort of confirmation that you are receiving my messages and that you will comply fully.
I have a Tor browser, plenty of disposable income, and all the free time in the world, kiddo. Do not test me, it is remarkably easy to make someone disappear. This is your last chance to respond before you end up in a red room.
Never let it be said that I am not fair. You had your chance, kiddo, but you've chosen to ignore all of my generous warnings, and you'll soon learn the lengths I'm willing to go for my mom.
Expect company, f u c kboy.
That's a combined mass of 380,000,000 kg of C ock
Now we must make an approximation. For simplicity's sake, let us assume the C ocks are all evenly lined up in a ring around the equator. The equation for moment of inertia of a ring is I = mass*radius^2. The radius of earth is about 6.371 million meters. Therefore the radius of the approximated D ick ring is 6,371,000 + 0.80 = 6,371,000.8 meters.
I = 380,000,000*6,371,000.8^2 = 1.5424*10^22
The Earth has a moment of inertia, I = 8.04×10^37 kg*m^2. The Earth rotates at a moderate angular velocity of 7.2921159 ×10^−5 radians/second.
So in conclusion If we all have a boner at the same time, we will collectively be able to last 0.6752 nanoseconds longer in bed. Stay hard fellas.